CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells.

نویسندگان

  • Beth A Summers
  • Jeffrey L Overholt
  • Nanduri R Prabhakar
چکیده

The carotid bodies respond to changes in arterial O(2), CO(2), and pH, and Ca(2+) influx via voltage-gated Ca(2+) channels is an important step in the chemoreception process. The objectives of the present study were as follows: 1) to determine whether hypercapnia modulates Ca(2+) current in glomus cells, and if so, to determine if this modulation is secondary to changes in pH; 2) to examine the mechanism of CO(2) modulation of the Ca(2+) current; and 3) to determine whether the effects of hypercapnia and hypoxia on Ca(2+) channel activity in glomus cells are synergistic. The effects of CO(2) on Ca(2+) current were monitored in glomus cells isolated from rabbit carotid bodies using both perforated and conventional patch-clamp techniques. Raising CO(2) in the extracellular solution from 5 to 10% (hypercapnia) reversibly augmented the whole-cell Ca(2+) current. This augmentation was rapid and increased the whole-cell Ca(2+) current similarly in both the perforated and the conventional patch configurations by 16 +/- 2% (n = 5) and 15 +/- 1% (n = 32), respectively. The following observations suggest that the effects of CO(2) are not secondary to changes in pH: 1) isohydric hypercapnia (pH maintained at 7.4) augmented the Ca(2+) current by 24 +/- 2% (n = 6); 2) decreasing the pH of the extra- or intracellular solutions decreased the Ca(2+) current by 43 +/- 4% (n = 8) and 13 +/- 1% (n = 5), respectively; and 3) hypercapnia did not shift the half-maximal activation voltage (V(1/2)), whereas intracellular and extracellular acidosis alone caused shifts in V(1/2). Furthermore, 100 nM of a membrane-permeable protein kinase A inhibitor prevented the augmentation by CO(2), and 500 microM 8-Br-cAMP mimicked the effect of CO(2) by augmenting the Ca(2+) current by 10 +/- 2% (n = 6). Also, cyclic AMP levels in carotid bodies increased from 1.98 +/- 0.6 to 9.0 +/- 2 pmol/microg protein in response to hypercapnia. In contrast, decreasing pH in the nominal absence of CO(2) did not affect cAMP levels in rabbit carotid bodies. Further, nisoldipine, but not omega-conotoxin MVIIC, prevented augmentation of the Ca(2+) current by CO(2). In addition, when combined, hypercapnia and hypoxia augmented the Ca(2+) current by 26 +/- 4% (n = 7), which is greater than either stimulus alone, suggesting the effects are additive. Taken together, these results indicate that L-type Ca(2+) current is augmented by hypercapnia. The effect of CO(2) is not secondary to changes in pH and seems to be mediated by a protein kinase A-dependent mechanism. Furthermore, hypercapnia and hypoxia act additively in stimulating Ca(2+) current in glomus cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway.

Previous studies have suggested that voltage-gated Ca(2+) influx in glomus cells plays a critical role in sensory transduction at the carotid body chemoreceptors. The purpose of the present study was to determine the effects of hypoxia on the Ca(2+) current in glomus cells and to elucidate the underlying mechanism(s). Experiments were performed on freshly dissociated glomus cells from rabbit ca...

متن کامل

Nitric Oxide Inhibits L-Type Ca Current in Glomus Cells of the Rabbit Carotid Body Via a cGMP-Independent Mechanism

Summers, Beth A., Jeffrey L. Overholt, and Nanduri R. Prabhakar. Nitric oxide inhibits L-type Ca current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J. Neurophysiol. 81: 1449–1457, 1999. Previous studies have shown that nitric oxide (NO) inhibits carotid body sensory activity. To begin to understand the cellular mechanisms associated with the actions of NO in th...

متن کامل

Ca Current in Rabbit Carotid Body Glomus Cells Is Conducted by Multiple Types of High-Voltage–Activated Ca Channels

Overholt, Jeffrey L. and Nanduri R. Prabhakar. Ca current leads to a Ca-dependent release of neurotransmitter(s) in rabbit carotid body glomus cells is conducted by multiple types from glomus cells, which activates sensory fibers of the of high-voltage–activated Ca channels. J. Neurophysiol. 78: carotid sinus nerve. Several lines of evidence support the 2467–2474, 1997. Carotid bodies are senso...

متن کامل

HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body.

Direct evidence for a specific K(+) channel underlying the resting membrane potential in glomus cells of the carotid body has been absent. The product of the human ether-a-go-go-related gene (HERG) produces inward rectifier currents that are known to contribute to the resting membrane potential in other neuronal cells. The goal of the present study was to determine whether carotid body glomus c...

متن کامل

Norepinephrine Inhibits a Toxin Resistant Ca Current in Carotid Body Glomus Cells: Evidence for a Direct G Protein Mechanism

Overholt, Jeffrey L. and Nanduri R. Prabhakar. Norepinephrine in this response (Montoro et al. 1996; Obeso et al. 1992; inhibits a toxin resistant Ca current in carotid body glomus cells: Urena et al. 1994). Several lines of evidence suggest that evidence for a direct G protein mechanism. J. Neurophysiol. 81: neurotransmitters released from glomus cells act both on the 225–233, 1999. Previous s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2002